Chemguide - answers

COMPLEX IONS - NAMES

- 1. An anionic complex carries a negative charge, whereas a cationic complex carries a positive one.
- 2. a) hexaaquacobalt(II) ion
 - b) tetraamminediaquacopper(II) ion
 - c) tetrahydroxoaluminate(III) ion (The (III) is often omitted in ions where the metal usually has the same oxidation state in all its compounds. The "ate" ending shows the negative ion.)
 - d) hexacyanoferrate(II) ion (Each cyanide ion carries a charge of -1, and there are six of them. To give an overall charge of 4-, the iron ion must have a charge of +2, and so an oxidation state of +2 as well.)
 - e) hexacyanoferrate(III) ion by the same logic as above.
- 3. a) [CuCl₄]²⁻ (This was originally made from four chloride ions each with a single negative charge and a copper(II) ion with a 2+ charge. Therefore the overall charge is 2-.)
 - b) $[AlF_6]^{3-}$ (Use a logic similar to the one in the last question.)
 - c) $[Cr(H_2O)_5(OH)]^{2+}$ (The water molecules are electrically neutral, and the hydroxide ion originally had a single negative charge. The name tells you that the chromium is in the +3 oxidation state and started as a Cr^{3+} ion. The net charge is therefore 2+.)
 - d) $[Ag(NH_3)_2]^+$ (The ammonia molecules are neutral and so add no charge to the original 1+ silver ion.)
 - e) $[V(H_2O)_6]^{3+}$ (Use the same logic as in the last question. The name tells you that the vanadium is in the +3 oxidation state, and so the original uncomplexed ion was V^{3+} . The water makes no difference to the overall charge.)