Chemguide - answers

$\mathbf{K}_{\mathbf{P}}$

1. a) The total number of moles is $95+55+5=155$.

The mole fraction of ethene is $95 / 155=0.613$
The mole fraction of steam is $55 / 155=0.355$
The mole fraction of ethanol is $5 / 155=0.032$
(All of these are quoted to 3 significant figures.)
b) Partial pressure $=$ mole fraction x total pressure

The partial pressure of ethene is $0.613 \times 60=36.78 \mathrm{~atm}$
The partial pressure of steam is $0.355 \times 60=21.3 \mathrm{~atm}$
The partial pressure of ethanol is $0.0 .032 \times 60=1.92 \mathrm{~atm}$
(To avoid further rounding errors, I haven't rounded off the ethene value any more.)
c)

$$
\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}}{\mathrm{P}_{\mathrm{CH}_{2}=\mathrm{CH}_{2}} \times \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}
$$

Brackets are not needed in this expression. If you have used square brackets (implying concentrations in $\mathrm{mol} \mathrm{dm}{ }^{-3}$), your answer is wrong.
d) $K_{P}=\frac{1.92}{36.78 \times 21.3}$
$=2.45 \times 10^{-3} \mathrm{~atm}^{-1}$
In the K_{P} expression, you have the units atm at the top and atm x atm at the bottom. Overall, the units are $1 / \mathrm{atm}_{\text {or } \mathrm{atm}^{-1} \text {. }}$.

This calculation is at the very easy end of K_{P} calculations. You will need to look in detail at more complicated examples from another source.
2. a) $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{NH}_{3}}{ }^{2}}{\mathrm{P}_{\mathrm{N}_{2}} \times \mathrm{P}_{\mathrm{H}_{2}}{ }^{3}}$
b) $\mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{CO}_{2}}$
c) $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{SO}_{3}}{ }^{2}}{\mathrm{P}_{\mathrm{SO}_{2}}{ }^{2} \times \mathrm{P}_{\mathrm{O}_{2}}}$
d)

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{H}_{2}} \times \mathrm{P}_{\mathrm{CO}}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}
$$

