Chemguide - answers

pH CURVES

1. a) The equivalence point is where you have mixed the sodium hydroxide and the hydrochloric acid in exactly equation proportions.

$$
\mathrm{NaOH}_{(a q)}+\mathrm{HCl}_{(\mathrm{qq)}} \longrightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

So they would be there in a molar ratio of exactly $1: 1$
b)

c)

Chemguide - answers

2. a)

b)

c)

www.chemguide.co.uk

Chemguide - answers

d)

e)

3. a)
$\mathrm{Na}_{2} \mathrm{CO}_{3(a q)}+\mathrm{HCl}_{(a q)} \longrightarrow \mathrm{NaCl}_{(a q)}+\mathrm{NaHCO}_{3(a q)}$
b)

$$
\mathrm{NaHCO}_{3(a q)}+\mathrm{HCl}_{(a q)} \longrightarrow \mathrm{NaCl}_{(a q)}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Or you could give the overall equation for the reaction for part (b):

$$
\mathrm{Na}_{2} \mathrm{CO}_{3(a \mathrm{q})}+2 \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow 2 \mathrm{NaCl}_{(\text {aq) }}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

c) (i) A diprotic has two protons (or hydrogen ions) which it can donate to a base.

(iii)

(You don't need to colour-code the hydrogens.)

