Chemguide - questions

REDOX POTENTIALS FOR OTHER SYSTEMS

For these questions you will need to look at this table taken from the Chemguide page.

	E ⁰ (volts)
Li ⁺ (aq) + e ⁻ ————————————————————————————————————	-3.03
K+(aq) + e- K(s)	-2.92
Ca ²⁺ (aq) + 2e ⁻ ————————————————————————————————————	-2.87
Na ⁺ (aq) + e ⁻ ————————————————————————————————————	-2.71
$Mg^{2+}_{(aq)} + 2e^{-} \longrightarrow Mg_{(s)}$	-2.37
Al ³⁺ (aq) + 3e ⁻ ————————————————————————————————————	-1.66
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn_{(3)}$	-0.76
Fe ²⁺ (aq) + 2e ⁻ ————————————————————————————————————	-0.44
Pb ²⁺ (aq) + 2e ⁻ ————————————————————————————————————	-0.13
2H ⁺ (aq) + 2e ⁻ ———————————————————————————————————	0
Cu ²⁺ (aq) + 2e ⁻ ————————————————————————————————————	+0.34
Fe ³⁺ (aq) + e ⁻ ————————————————————————————————————	+0.77
Ag ⁺ (a,q) + e ⁻ ————————————————————————————————————	+0.80
$Cr_2O_7^2(aq) + 14H^+(aq) + 6e^- = 2Cr^{3+}(aq) + 7H_2O(l)$	+1.33
Cl _{2(g)} + 2e ⁻	+1.36
Au ³⁺ (aq) + 3e ⁻ ————————————————————————————————————	+1.50

1. a) The cell diagram used to find the standard redox potential of the Cl₂/Cl⁻ system can be summarised like this:

$$Pt_{(s)}\left[H_{2(g)}\right] \mid 2H^{^{+}}_{(aq)} \parallel Cl_{2(g)} \, , \, 2Cl^{^{-}}_{(aq)} \mid Pt_{(s)}$$

$$E^{0} = + 1.36 v$$

Explain what that would look like in practice. Draw a fully labelled diagram if you want to, but a description is perfectly adequate.

b) Explain what an E⁰ value of +1.36 volts implies about these two equilibria

$$2H^{+}_{(aq)} + 2e^{-}$$
 \longrightarrow $H_{2(g)}$ $Cl_{2(g)} + 2e^{-}$ \longrightarrow $2Cl_{(aq)}$

c) The E^0 value for the Fe^{3+}/Fe^{2+} is ± 0.77 volts. Write down the cell diagram (as in part (a)) for the determination of this value.

Chemguide - questions

- 2. a) Looking at the table on the previous page, what is the strongest oxidising agent present?
 - b) Chlorine gas and dichromate(VI) ions in acidic solution are both oxidising agents. Which is the stronger?
 - c) Which of the following changes would be the easiest?
 - Converting iron(II) ions into iron(III) ions.
 - Converting chloride ions into chlorine.
 - Converting chromium(III) ions into dichromate(VI) ions.