Chemguide - questions

INTRODUCTION TO SOLUBILITY PRODUCTS

1. If you shake solid powdered calcium sulphate with water, the following equilibrium is set up:

 $CaSO_{4(s)}$ \frown $Ca^{2+}_{(aq)}$ + $SO_4^{2-}_{(aq)}$

The expression for the solubility product of calcium sulphate is $K_{sp} = [Ca^{2+}_{(aq)}] [SO_4^{2-}_{(aq)}]$

a) What are the units for the solubility product of calcium sulphate?

b) The value of the solubility product for calcium sulphate at 298 K is 4.8×10^{-9} (with the units you should have given in (a)). Suppose you mixed solutions of a soluble calcium salt and a soluble sulphate so that the concentrations of each in the resulting solution would be 1×10^{-3} mol dm⁻³ in the absence of any possible reaction. What would happen? Explain your answer.

c) Suppose you mixed solutions of a soluble calcium salt and a soluble sulphate so that the concentrations of each in the resulting solution would be 1×10^{-5} mol dm⁻³ in the absence of any possible reaction. What would happen? Explain your answer.

- 2. Write expressions for the solubility products (including their units) for each of the following sparingly soluble ionic compounds. You can leave out the state symbols (aq).
 - a) lead(II) bromide, PbBr₂
 - b) strontium carbonate, SrCO₃
 - c) silver(I) chloride, AgCl
 - d) silver(I) chromate, Ag₂CrO₄
 - e) aluminium hydroxide, Al(OH)₃
 - f) lead(II) sulphate, PbSO₄
 - g) silver(I) phosphate, Ag₃PO₄
 - h) bismuth sulphide, Bi₂S₃